9.1 PARAMETRIC CURVES

EXAMPLE A Investigate the family of curves with parametric equations

$$
x=a+\cos t \quad y=a \tan t+\sin t
$$

What do these curves have in common? How does the shape change as a increases?
SOLUTION We use a graphing device to produce the graphs for the cases $a=-2$, $-1,-0.5,-0.2,0,0.5,1$, and 2 shown in Figure 1. Notice that all of these curves (except the case $a=0$) have two branches, and both branches approach the vertical asymptote $x=a$ as x approaches a from the left or right.

FIGURE I Members of the family $x=a+\cos t, y=a \tan t+\sin t$, all graphed in the viewing rectangle $[-4,4]$ by $[-4,4]$

When $a<-1$, both branches are smooth; but when a reaches -1 , the right branch acquires a sharp point, called a cusp. For a between -1 and 0 the cusp turns into a loop, which becomes larger as a approaches 0 . When $a=0$, both branches come together and form a circle (see Example 2). For a between 0 and 1, the left branch has a loop, which shrinks to become a cusp when $a=1$. For $a>1$, the branches become smooth again, and as a increases further, they become less curved. Notice that the curves with a positive are reflections about the y-axis of the corresponding curves with a negative.

These curves are called conchoids of Nicomedes after the ancient Greek scholar Nicomedes. He called them conchoids because the shape of their outer branches resembles that of a conch shell or mussel shell.

